Time-dependent rarefied gas flow into vacuum from a long circular pipe closed at one end

E.M. Shakhov and V.A. Titarev
Dorodnicyn Computing Centre, Moscow, Russia

RGD 29, Xian, China

Specification of the problem

- At the initial time moment the rarefied gas at rest characterized by number density n_{0} and temperature T_{0} occupies a circular pipe of radius a and length L. The pipe is permanently closed at one end $z=-\mathrm{L}$.
- At the outlet position $z=0$ (other end of the pipe) a diaphragm separates the pipe and an infinitely large reservoir, in which there is no gas.
- At the start of the process $t=0$ the diaphragm is removed and a non-stationary flow of the gas from the pipe into the reservoir starts.
- An example of geometry of the problem is shown here for $L / a=30$.

BKE with the Shakhov model collision integral (1968)

- The three-dimensional equation for the velocity distribution function f takes the form

$$
\begin{aligned}
\xi_{\alpha} \frac{\partial f}{\partial x_{\alpha}}=\frac{p}{\mu}\left(f^{+}-f\right), \quad f^{+}=f_{M}\left[1+\frac{4}{5}(1-\operatorname{Pr}) S_{\alpha} c_{\alpha}\left(c^{2}-\frac{5}{2}\right)\right], \\
f_{M}=\frac{n}{\left(2 \pi R_{g} T\right)^{3 / 2}} \exp \left(-c^{2}\right), \quad S_{i}=\frac{1}{n} \int c_{i} c^{2} f d \xi, \quad \mathbf{c}=\frac{\mathbf{v}}{\sqrt{2 R_{g} T}}, \quad c^{2}=c_{\beta} c_{\beta} .
\end{aligned}
$$

- Macroscopic quantities defined as

$$
\begin{gathered}
n=\int f d \boldsymbol{\xi}, \quad n \mathbf{u}=\int \boldsymbol{\xi} f d \boldsymbol{\xi}, \quad \frac{3}{2} m n R_{g} T+\frac{1}{2} m n u^{2}=\frac{1}{2} m \int \xi^{2} f d \boldsymbol{\xi}, \\
\\
\mathbf{q}=\frac{1}{2} m \int \mathbf{v} v^{2} f d \boldsymbol{\xi}, \quad \mathbf{v}=\boldsymbol{\xi}-\mathbf{u}, \quad \rho=m n, \quad p=\rho R_{g} T \\
u^{2}=u_{\alpha} u_{\alpha}, \quad v^{2}=v_{\alpha} v_{\alpha}, \quad \xi^{2}=\xi_{\alpha} \xi_{\alpha}, \quad d \boldsymbol{\xi}=d \xi_{x} d \xi_{y} d \xi_{z}
\end{gathered}
$$

- Boundary condition on the surface:

$$
f_{w}=\frac{n_{w}}{\left(2 \pi R_{g} T_{\mathrm{sur}}\right)^{3 / 2}} \exp \left(-\frac{\xi^{2}}{2 R_{g} T_{\mathrm{sur}}}\right), \quad n_{w}=\sqrt{\frac{2 \pi}{R_{g} T_{\mathrm{sur}}}} N_{i}, \quad N_{i}=-\int_{\xi_{n}<0} \xi_{n} f d \xi
$$

- Here Prandtl number $\operatorname{Pr}=2 / 3, R_{g}$ is gas constant, m is molecular mass.

Non-dimensional form of the S-model equation

- Let us pass to non-dimensional variables as follows:

$$
\begin{gathered}
\mathbf{x}^{\prime}=\frac{\mathbf{x}}{a}, \quad n^{\prime}=\frac{n}{n_{1}}, \quad p^{\prime}=\frac{p}{p_{1}}, \quad T^{\prime}=\frac{T}{T_{1}} \\
\mathbf{u}^{\prime}=\frac{\mathbf{u}}{v_{*}}, \quad \boldsymbol{\xi}^{\prime}=\frac{\boldsymbol{\xi}}{v_{*}}, \quad \mathbf{q}^{\prime}=\frac{\mathbf{q}}{m n_{1} v_{*}^{3}}, \quad f^{\prime}=\frac{f}{n_{1} v_{*}^{3}}
\end{gathered}
$$

where $p_{1}=m n_{1} R_{g} T_{1}, v_{*}=\sqrt{2 R_{g} T_{1}}$

- The degree of gas rarefaction is described by the so-called rarefication parameter δ_{1}, which is inversely proportional to the Knudsen number:

$$
\delta=\frac{a p_{1}}{\mu\left(T_{1}\right) v_{*}}=\frac{8}{5 \sqrt{\pi}} \frac{1}{\mathrm{Kn}}, \quad \mathrm{Kn}=\frac{\lambda_{1}}{a} .
$$

Here λ_{1} is the free molecular path at reference conditions.

- From now on, the non-dimensional variables are denoted by the same symbols as dimensional.

Non-dimensional form of the S-model equation (continued)

- In the non-dimensional variables the kinetic equation takes the form:

$$
\begin{gathered}
\xi_{x} \frac{\partial f}{\partial x}+\xi_{y} \frac{\partial f}{\partial y}+\xi_{z} \frac{\partial f}{\partial z}=\nu\left(f^{(S)}-f\right), \quad \nu=\frac{n T}{\mu(T)} \delta_{1}, \\
f^{(S)}=f_{M}\left(1+\frac{4}{5}(1-\operatorname{Pr}) \operatorname{Sc}\left(c^{2}-\frac{5}{2}\right)\right), \quad f_{M}=\frac{n}{(\pi T)^{3 / 2}} e^{-c^{2}}, \quad \mathbf{S}=\frac{2 \mathbf{q}}{n T^{3 / 2}}
\end{gathered}
$$

- Macroscopic quantities defined as

$$
\left(n, n \mathbf{u}, \frac{3}{2} n T+n u^{2}, \mathbf{q}\right)=\int\left(1, \boldsymbol{\xi}, \xi^{2}, \frac{1}{2} \mathbf{v} v^{2}\right) f d \boldsymbol{\xi}
$$

The non-dimensional pressure is given by $p=n T$.

- Boundary condition on the surface:

$$
\begin{gathered}
f(\mathbf{x}, \boldsymbol{\xi})=f_{w}=\frac{n_{w}}{\left(\pi T_{w}\right)^{3 / 2}} \exp \left(-\frac{\xi^{2}}{T_{w}}\right), \quad \xi_{n}=(\boldsymbol{\xi}, \mathbf{n})>0 \\
n_{w}=N_{i} / N_{r}, \quad N_{i}=-\int_{\xi_{n}<0} \xi_{n} f d \boldsymbol{\xi}, \quad N_{r}=+\int_{\xi_{n}>0} \xi_{n} \frac{1}{\left(\pi T_{w}\right)^{3 / 2}} \exp \left(-\frac{\xi^{2}}{T_{w}}\right) d \boldsymbol{\xi} .
\end{gathered}
$$

Numerical method of solution \& Nesvetay-3D package

- Discrete velocity method conservative with respect to collision integral
- Conservative calculations of macroscopic variables (number density, velocity, temperature, heat flux vector)
- Euler explicit time marching
- CFL number $\approx 0.25 \ldots 0.3$
- Second-order accurate Total Variation Diminishing method
- Arbitrary cells in physical domain
- Least-square or quasi-1D reconstructions
- Various slope limiters
- Parallel solver
- Either physical or velocity domains can be split
- Calculations on up to 144 CPU cores (12 Intel Xeon Sandy Bridge CPUs)

Conservative discrete velocity framework

- Time marching:

$$
\frac{\partial}{\partial t} f=-\boldsymbol{\xi} \nabla f+J(f), \quad J=\nu\left(f^{(S)}-f\right)
$$

- Replace the infinite domain of integration in the molecular velocity space $\boldsymbol{\xi}$ by a finite computational domain.
- Let $\boldsymbol{\Xi}_{k}$ be a vector, made of k-th component of velocity nodes over the whole mesh:

$$
\mathbf{\Xi}_{k}=\left(\xi_{k 1}, \xi_{k 2}, \xi_{k 3}, \ldots \xi_{k N_{\xi}}\right)^{T}
$$

- The kinetic equation is replaced by a system of N_{ξ} advection equations:

$$
\frac{\partial}{\partial t} \mathbf{f}+\frac{\partial}{\partial x_{\alpha}}\left(\boldsymbol{\Xi}_{\alpha} \circ \mathbf{f}\right)=\mathbf{J}, \quad \mathbf{J}=\nu\left(\mathbf{f}^{(S)}-\mathbf{f}\right)
$$

Here operation \circ corresponds to a component by component multiplication of vectors $c=a \circ b \quad \rightarrow \quad c_{i}=a_{i} b_{i}$.

One step explicit numerical method of Kolgan type

- Denote by $\left|V_{i}\right|$ the cell volume, $|A|_{i l}$ area of face I. Integration over a control volume and use of calculus leads to the following implicit method:

$$
\frac{\mathbf{f}_{i}^{n+1}-\mathbf{f}_{i}^{n}}{\Delta t}=\mathbf{R}_{i}^{n}=-\frac{1}{\left|V_{i}\right|} \sum_{l=1} \mathbf{\Phi}_{i l}^{n}+\mathbf{J}_{i}^{n}
$$

where $\mathbf{f}_{i}^{n}=\mathbf{f}\left(t^{n}, \mathbf{x}_{i}\right)$ - spatial average of distribution function in spatial cell V_{i} at time moment t^{n}.

- The numerical flux through the face $A_{i l}$ is defined as

$$
\boldsymbol{\Phi}_{i l}^{n}=\int_{A_{i l}}\left(\boldsymbol{\xi}_{n i l} \circ \mathbf{f}^{n}\right) d s, \quad \boldsymbol{\xi}_{n i l}=n_{1 /} \boldsymbol{\Xi}_{1}+n_{2 /} \boldsymbol{\Xi}_{2}+n_{3 /} \boldsymbol{\Xi}_{3}
$$

Here vector $\boldsymbol{\xi}_{n /}$ consists of projections of velocity nodes onto outward unit normal $\mathbf{n}_{i l}$ of face $/$ of cell V_{i}.

- We consider cells of various shapes.

Flux calculation

- As is usual in upwind methods, the numerical flux depends on boundary extrapolated values \mathbf{f}^{-}(inner value) and \mathbf{f}^{+}(external value):

$$
\boldsymbol{\Phi}_{i l}^{n}=\mathbf{G}\left(\mathbf{f}_{i,}^{n}, \mathbf{f}_{i, l_{1}}^{n}\right)\left|A_{i \mid}\right|,
$$

Here I_{1} is the number of the face of the cell $\sigma_{l}(i)$, adjacent to the face I of the cell i.

- The exact Riemann solver $\mathbf{G}\left(\mathbf{f}^{-}, \mathbf{f}^{+}\right)$is given by

$$
\left.\mathbf{G}\left(\mathbf{f}^{-}, \mathbf{f}^{+}\right)^{\text {exact }}=\frac{1}{2} \boldsymbol{\xi}_{\text {nil }} \circ\left[\left(\mathbf{f}^{-}+\mathbf{f}^{+}\right)\right)-\operatorname{sign}\left(\boldsymbol{\xi}_{n i l}\right) \circ\left(\mathbf{f}^{+}-\mathbf{f}^{-}\right)\right]
$$

- For high-order method $\mathbf{f}^{-}, \mathbf{f}^{+}$are found from a reconstruction procedure and depends on solution values in several neighboring cells.

Mesh parameters

- Calculations were performed for the pipe length $L=10$ and $L=30$ for $\delta_{0}=0,1$ and 100 . The reservoir size has the size of about five pipe radii.
- Verification: $L=10$ and spatial meshes of 17 and 54 thousands hexahedrons, which differ in the radial resolution (clustering towards the pipe's surface) and longitudinal resolution inside the pipe.
- Spatial mesh is of O type, with a square patch in the centre of the cross section and clustering applied towards the pipe surface and its ends.
- The velocity domain is a cylinder and the velocity mesh is constructed in the cylindrical coordinate system. The velocity mesh resolution can be described by a group of three numbers, corresponding to the numbers of nodes in the radial, angular and ξ_{z} directions.
- For $\delta_{0} \leq 10$ the mesh consists of $17 \times 16 \times 24$ cells whereas $21 \times 16 \times 32$ cells are used for $\delta_{0}=100$. The finer velocity mesh and slightly larger velocity domain size or $\delta_{0} \gg 1$ are needed to properly resolve large temperature drops in the low-density region.
- Calculations have shown that the coarse of the two meshes is sufficient to obtain results with 2% accuracy. For the case $L=30$ the mesh containing 27675 hexahedron cells is used, which is constructed by inserting the additional cells along the pipe

Example of computational mesh

Definitions of computed integral data

- Reduced flow rate at any inside position: $Q(z)=\frac{2}{\sqrt{\pi}} \dot{M}, \quad \dot{M}(z)=\int_{A(z)} n u_{3} d x d y$.
- We need the time-dependent value at the outlet position $Q^{\text {outlet }}(t)=Q(t, 0)$.
- At initial time $t=0$ it is obvious that $Q^{\text {outlet }}(0) \equiv 1$.
- The gas dynamics solution of a rarefaction wave (expansion into vacuum) gives

$$
u_{z}-c=\frac{z}{t}, \quad u_{z}+3 c=3 c_{0}, \quad c_{0}=\sqrt{5 / 6}, \quad T=n^{2 / 3}, \quad-L<z<0, \quad t<\frac{L}{c_{0}}
$$

From here the explicit expression for the solution is given by

$$
u_{z}=\frac{3}{4}\left(c_{0}+\frac{z}{t}\right), \quad c=u_{z}-z / t, \quad T=\frac{6}{5} c^{2}, \quad n=T^{3 / 2} .
$$

Gas dynamics flow rate through a circular pipe in the non-stationary expansion into vacuum:

$$
u_{*}=\frac{3}{4} c_{0}, \quad n_{*}=\frac{27}{64}, \quad \dot{M}_{*}=n_{*} u_{*} \pi \approx 0.907, \quad Q_{*} \approx 1.02
$$

- Reduced total mass: $W(t)=\frac{M_{\text {tot }}(t)}{M_{\text {tot }}(0)}$, where $M_{\text {tot }}(t)=\int_{-L \leq z \leq 0} n(t, \mathbf{x}) d \mathbf{x}$.

Computed reduced flow rate data for $L=10,30$.

Computed reduced total mass

Axial distributions of density for $\delta_{0}=1$

Axial distributions of density for $\delta_{0}=100$

Axial distributions of Mach number for $\delta_{0}=100$

Density contour lines for $L=10, \delta_{0}=100$ and $t=100$.

Mass flow $n u_{3}$ for $L=10, \delta_{0}=100$ and $t=100$.

Conclusions

Some recent publications for 3D rarefied gas flows:
(1) V.A. Titarev. Efficient deterministic modelling of three-dimensional rarefied gas flows // Comm. Comp. Phys. 2012. V. 12. N. 1. p. 162-192.
(2) V.A. Titarev and E.M. Shakhov. Computational study of a rarefied gas flow through a long circular pipe into vacuum //Vacuum, Special Issue "Vacuum Gas Dynamics". 2012. V. 86. N. 11. p. 1709-1716.
(3) V. Titarev, M. Dumbser and S. Utyuzhnikov. Construction and comparison of parallel implicit kinetic solvers in three spatial dimensions // J. Comp. Phys. 2014. V. 256. p. 17-33.
(4) E.V. Shakhov and V.A. Titarev. Non-stationary rarefied gas flow into vacuum from a circular pipe closed at one end // Vacuum. 2014, in press.
(5) V.A. Titarev. Computer package Nesvetay-3D for modelling three-dimensional flows of monatomic rarefied gases // Science \& Education. 2014. N. 6.

Acknowledgments:
This work was supported by the Russian Foundation for Basic Research, projects no. 13-01-00522-A and 14-08-00604-A. The second author also acknowledges the support by the Russian government under grant "Measures to Attract Leading Scientists to Russian Educational Institutions" (contract No. 11.G34.31.0072).

