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Specification of the problem

At the initial time moment the rarefied gas at rest characterized by number density
n0 and temperature T0 occupies a circular pipe of radius a and length L. The pipe
is permanently closed at one end z = −L.

At the outlet position z = 0 (other end of the pipe) a diaphragm separates the
pipe and an infinitely large reservoir, in which there is no gas.

At the start of the process t = 0 the diaphragm is removed and a non-stationary
flow of the gas from the pipe into the reservoir starts.

An example of geometry of the problem is shown here for L/a = 30.
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BKE with the Shakhov model collision integral (1968)

The three-dimensional equation for the velocity distribution function f takes the
form
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Here Prandtl number Pr = 2/3, Rg is gas constant, m is molecular mass.
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Non-dimensional form of the S-model equation

Let us pass to non-dimensional variables as follows:
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where p1 = mn1RgT1, v∗ =
√

2RgT1

The degree of gas rarefaction is described by the so-called rarefication parameter
δ1, which is inversely proportional to the Knudsen number:
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Here λ1 is the free molecular path at reference conditions.

From now on, the non-dimensional variables are denoted by the same symbols as
dimensional.
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Non-dimensional form of the S-model equation (continued)

In the non-dimensional variables the kinetic equation takes the form:
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The non-dimensional pressure is given by p = nT .

Boundary condition on the surface:
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Numerical method of solution & Nesvetay-3D package

Discrete velocity method conservative with respect to collision integral

Conservative calculations of macroscopic variables (number density,
velocity, temperature, heat flux vector)
Euler explicit time marching
CFL number ≈ 0.25 . . . 0.3

Second-order accurate Total Variation Diminishing method

Arbitrary cells in physical domain
Least-square or quasi-1D reconstructions
Various slope limiters

Parallel solver

Either physical or velocity domains can be split
Calculations on up to 144 CPU cores (12 Intel Xeon Sandy Bridge
CPUs)

E.M. Shakhov and V.A. Titarev (CC RAS) Time-dependent outflow RGD 29 6 / 20



Conservative discrete velocity framework

Time marching:
∂

∂t
f = −ξ∇f + J(f ), J = ν(f (S) − f ),

Replace the infinite domain of integration in the molecular velocity space ξ by a
finite computational domain.

Let Ξk be a vector, made of k-th component of velocity nodes over the whole
mesh:

Ξk = (ξk1, ξk2, ξk3, . . . ξkNξ )T .

The kinetic equation is replaced by a system of Nξ advection equations:

∂

∂t
f +

∂

∂xα
(Ξα ◦ f) = J, J = ν(f(S) − f).

Here operation ◦ corresponds to a component by component multiplication of
vectors c = a ◦ b → ci = aibi .
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One step explicit numerical method of Kolgan type

Denote by |Vi | the cell volume, |A|il area of face l . Integration over a control
volume and use of calculus leads to the following implicit method:

fn+1
i − fni

∆t
= Rn

i = − 1

|Vi |
∑
l=1

Φn
il + Jn

i ,

where fni = f(tn, xi ) - spatial average of distribution function in spatial cell Vi at
time moment tn.

The numerical flux through the face Ail is defined as

Φn
il =

∫
Ail

(ξnil ◦ fn)ds, ξnil = n1lΞ1 + n2lΞ2 + n3lΞ3.

Here vector ξnl consists of projections of velocity nodes onto outward unit normal
nil of face l of cell Vi .

We consider cells of various shapes.
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Flux calculation

As is usual in upwind methods, the numerical flux depends on boundary
extrapolated values f− (inner value) and f+ (external value):

Φn
il = G(fnil , f

n
il ,l1)|Ail |,

Here l1 is the number of the face of the cell σl(i), adjacent to the face l of the
cell i .

The exact Riemann solver G(f−, f+) is given by

G(f−, f+)exact =
1

2
ξnil ◦

[
(f− + f+))− sign(ξnil) ◦ (f+ − f−)

]
For high-order method f−, f+ are found from a reconstruction procedure and
depends on solution values in several neighboring cells.
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Mesh parameters

Calculations were performed for the pipe length L = 10 and L = 30 for δ0 = 0, 1
and 100. The reservoir size has the size of about five pipe radii.

Verification: L = 10 and spatial meshes of 17 and 54 thousands hexahedrons,
which differ in the radial resolution (clustering towards the pipe’s surface) and
longitudinal resolution inside the pipe.

Spatial mesh is of O type, with a square patch in the centre of the cross section
and clustering applied towards the pipe surface and its ends.

The velocity domain is a cylinder and the velocity mesh is constructed in the
cylindrical coordinate system. The velocity mesh resolution can be described by a
group of three numbers, corresponding to the numbers of nodes in the radial,
angular and ξz directions.

For δ0 ≤ 10 the mesh consists of 17× 16× 24 cells whereas 21× 16× 32 cells are
used for δ0 = 100. The finer velocity mesh and slightly larger velocity domain size
or δ0 � 1 are needed to properly resolve large temperature drops in the
low-density region.

Calculations have shown that the coarse of the two meshes is sufficient to obtain
results with 2% accuracy. For the case L = 30 the mesh containing 27675
hexahedron cells is used, which is constructed by inserting the additional cells
along the pipe
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Example of computational mesh
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Definitions of computed integral data

Reduced flow rate at any inside position: Q(z) =
2√
π
Ṁ, Ṁ(z) =

∫
A(z)

nu3dxdy .

We need the time-dependent value at the outlet position Qoutlet(t) = Q(t, 0).

At initial time t = 0 it is obvious that Qoutlet(0) ≡ 1.

The gas dynamics solution of a rarefaction wave (expansion into vacuum) gives

uz − c =
z

t
, uz + 3c = 3c0, c0 =

√
5/6, T = n2/3, −L < z < 0, t <

L

c0

From here the explicit expression for the solution is given by

uz =
3

4
(c0 +

z

t
), c = uz − z/t, T =

6

5
c2, n = T 3/2.

Gas dynamics flow rate through a circular pipe in the non-stationary expansion
into vacuum:

u∗ =
3

4
c0, n∗ =

27

64
, Ṁ∗ = n∗u∗π ≈ 0.907, Q∗ ≈ 1.02

Reduced total mass: W (t) =
Mtot(t)

Mtot(0)
, where Mtot(t) =

∫
−L≤z≤0

n(t, x)dx.
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Computed reduced flow rate data for L = 10, 30.
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Computed reduced total mass
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Axial distributions of density for δ0 = 1
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Axial distributions of density for δ0 = 100
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Axial distributions of Mach number for δ0 = 100
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Density contour lines for L = 10, δ0 = 100 and t = 100.
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Mass flow nu3 for L = 10, δ0 = 100 and t = 100.
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Conclusions
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