Rarefied gas flow into vacuum through a long circular pipe composed of two sections of different radil

V.A. Titarev and E.M. Shakhov
Dorodnicyn Computing Centre, Moscow, Russia.

RGD 29, Xian, China

Specification of the problem

- Consider two (infinitely) large reservoirs filled with the same monatomic gas and connected by a pipe of length L. The first half of the pipe is of radius R_{1}. The second half, adjacent to the vacuum region, is of the radius $R_{2} \geq R_{1}$.
- The complete accommodation of momentum and energy of molecules occurs at the pipe surface, which is kept under the constant temperature T_{1}.
- An example of geometry of the problem is shown here for $L / R_{1}=10$ and $R_{2} / R_{1}=2$.

BKE with the Shakhov model collision integral (1968)

- The 3D S-model equation for the velocity distribution function f is given by

$$
\begin{gathered}
\xi_{\alpha} \frac{\partial f}{\partial x_{\alpha}}=\frac{p}{\mu}\left(f^{+}-f\right), \quad f^{+}=f_{M}\left[1+\frac{4}{5}(1-\operatorname{Pr}) S_{\alpha} c_{\alpha}\left(c^{2}-\frac{5}{2}\right)\right] \\
f_{M}=\frac{n}{\left(2 \pi R_{g} T\right)^{3 / 2}} \exp \left(-c^{2}\right), \quad S_{i}=\frac{1}{n} \int c_{i} c^{2} f d \xi, \quad c=\frac{v}{\sqrt{2 R_{g} T}}, \quad c^{2}=c_{\beta} c_{\beta}
\end{gathered}
$$

- Macroscopic quantities defined as

$$
\begin{gathered}
n=\int f d \boldsymbol{\xi}, \quad n \boldsymbol{u}=\int \boldsymbol{\xi} f d \boldsymbol{\xi}, \quad \frac{3}{2} m n R_{g} T+\frac{1}{2} m n u^{2}=\frac{1}{2} m \int \xi^{2} f d \boldsymbol{\xi}, \\
\boldsymbol{q}=\frac{1}{2} m \int \boldsymbol{v} v^{2} f d \boldsymbol{\xi}, \quad \boldsymbol{v}=\boldsymbol{\xi}-\boldsymbol{u}, \quad \rho=m n, \quad p=\rho R_{g} T \\
u^{2}=u_{\alpha} u_{\alpha}, \quad v^{2}=v_{\alpha} v_{\alpha}, \quad \xi^{2}=\xi_{\alpha} \xi_{\alpha}, \quad d \boldsymbol{\xi}=d \xi_{x} d \xi_{y} d \xi_{z}
\end{gathered}
$$

- Boundary condition on the surface:

$$
f_{w}=\frac{n_{w}}{\left(2 \pi R_{g} T_{\text {sur }}\right)^{3 / 2}} \exp \left(-\frac{\xi^{2}}{2 R_{g} T_{\text {sur }}}\right), \quad n_{w}=\sqrt{\frac{2 \pi}{R_{g} T_{\text {sur }}}} N_{i}, \quad N_{i}=-\int_{\xi_{n}<0} \xi_{n} f d \xi
$$

- Here Prandtl number $\operatorname{Pr}=2 / 3, R_{g}$ is gas constant, m is molecular mass.

Non-dimensional form of the S-model equation

- Let us pass to non-dimensional variables as follows:

$$
\begin{gathered}
\boldsymbol{x}^{\prime}=\frac{\boldsymbol{x}}{R_{1}}, \quad n^{\prime}=\frac{n}{n_{1}}, \quad p^{\prime}=\frac{p}{p_{1}}, \quad T^{\prime}=\frac{T}{T_{1}}, \\
\boldsymbol{u}^{\prime}=\frac{\boldsymbol{u}}{v_{*}}, \quad \boldsymbol{\xi}^{\prime}=\frac{\boldsymbol{\xi}}{v_{*}}, \quad \boldsymbol{q}^{\prime}=\frac{\boldsymbol{q}}{m n_{1} v_{*}^{3}}, \quad f^{\prime}=\frac{f}{n_{1} v_{*}^{3}} .
\end{gathered}
$$

where $p_{1}=m n_{1} R_{g} T_{1}, v_{*}=\sqrt{2 R_{g} T_{1}}$

- The degree of gas rarefaction is described by the so-called rarefication parameter δ_{1}, which is inversely proportional to the Knudsen number:

$$
\delta=\frac{R_{1} p_{1}}{\mu\left(T_{1}\right) v_{*}}=\frac{8}{5 \sqrt{\pi}} \frac{1}{\mathrm{Kn}}, \quad \mathrm{Kn}=\frac{\lambda_{1}}{R_{1}}
$$

Here λ_{1} is the free molecular path at reference conditions.

- Below the non-dimensional variables are denoted by the same symbols as dimensional ones.

Non-dimensional form of the S-model equation (continued)

- In the non-dimensional variables the kinetic equation takes the form:

$$
\begin{gathered}
\xi_{x} \frac{\partial f}{\partial x}+\xi_{y} \frac{\partial f}{\partial y}+\xi_{z} \frac{\partial f}{\partial z}=\nu\left(f^{(S)}-f\right), \quad \nu=\frac{n T}{\mu(T)} \delta_{1} \\
f^{(S)}=f_{M}\left(1+\frac{4}{5}(1-\operatorname{Pr}) \operatorname{Sc}\left(c^{2}-\frac{5}{2}\right)\right), \quad f_{M}=\frac{n}{(\pi T)^{3 / 2}} e^{-c^{2}}, \quad \boldsymbol{S}=\frac{2 \boldsymbol{q}}{n T^{3 / 2}}
\end{gathered}
$$

- Macroscopic quantities defined as

$$
\left(n, n \boldsymbol{u}, \frac{3}{2} n T+n u^{2}, \boldsymbol{q}\right)=\int\left(1, \boldsymbol{\xi}, \xi^{2}, \frac{1}{2} \boldsymbol{v} v^{2}\right) f d \boldsymbol{\xi}
$$

The non-dimensional pressure is given by $p=n T$.

- Boundary condition on the surface:

$$
\begin{gathered}
f(\boldsymbol{x}, \boldsymbol{\xi})=f_{w}=\frac{n_{w}}{\left(\pi T_{w}\right)^{3 / 2}} \exp \left(-\frac{\xi^{2}}{T_{w}}\right), \quad \xi_{n}=(\boldsymbol{\xi}, \mathbf{n})>0 \\
n_{w}=N_{i} / N_{r}, \quad N_{i}=-\int_{\xi_{n}<0} \xi_{n} f d \boldsymbol{\xi}, \quad N_{r}=+\int_{\xi_{n}>0} \xi_{n} \frac{1}{\left(\pi T_{w}\right)^{3 / 2}} \exp \left(-\frac{\xi^{2}}{T_{w}}\right) d \boldsymbol{\xi} .
\end{gathered}
$$

Numerical method of solution \& Nesvetay-3D package

- Discrete velocity method conservative with respect to collision integral
- Steady solution is found by time marching
- Time-dependent calculations: Kolgan-type (1972) TVD method
- Conservative calculations of macroscopic variables (number density, velocity, temperature, heat flux vector)
- Fully implicit time marching
- One-step linearized method with large CFL numbers $\approx 10 \ldots 1000$
- LU-SGS approach of Men'shov and Nakamura to compute time increments
- Second-order accurate Total Variation Diminishing method
- Arbitrary cells in physical domain
- Least-square or quasi-1D reconstructions
- Various slope limiters
- Parallel solver
- Both physical or velocity domains can be split
- Calculations run on up to 512 CPU cores

Conservative discrete velocity framework

- March in time to steady state:

$$
\frac{\partial}{\partial t} f=-\xi \nabla f+J(f), \quad J=\nu\left(f^{(S)}-f\right)
$$

- Replace the infinite domain of integration in the molecular velocity space $\boldsymbol{\xi}$ by a finite computational domain.
- Let $\boldsymbol{\Xi}_{k}$ be a vector, made of k-th component of velocity nodes over the whole mesh:

$$
\boldsymbol{\Xi}_{k}=\left(\xi_{k 1}, \xi_{k 2}, \xi_{k 3}, \ldots \xi_{k N_{\xi}}\right)^{T}
$$

- The kinetic equation is replaced by a system of N_{ξ} advection equations:

$$
\frac{\partial}{\partial t} \boldsymbol{f}+\frac{\partial}{\partial x_{\alpha}}\left(\boldsymbol{\Xi}_{\alpha} \circ \boldsymbol{f}\right)=\boldsymbol{J}, \quad \boldsymbol{J}=\nu\left(\boldsymbol{f}^{(S)}-\boldsymbol{f}\right)
$$

Here operation \circ corresponds to a component by component multiplication of vectors $c=a \circ b \quad \rightarrow \quad c_{i}=a_{i} b_{i}$.

One step implicit numerical method

- Denote by $\left|V_{i}\right|$ the cell volume, $|A|_{i l}$ area of face I. Integration over a control volume and use of calculus leads to the following implicit method:

$$
\frac{\Delta \boldsymbol{f}_{i}}{\Delta t}=\boldsymbol{R}_{i}^{n+1}, \quad \Delta \boldsymbol{f}_{i}=\boldsymbol{f}_{i}^{n+1}-\boldsymbol{f}_{i}^{n}, \quad \boldsymbol{R}_{i}^{n+1}=-\frac{1}{\left|V_{i}\right|} \sum_{l=1} \Phi_{i l}^{n+1}+J_{i}^{n+1}
$$

where $\boldsymbol{f}_{i}^{n}=\boldsymbol{f}\left(t^{n}, \boldsymbol{x}_{i}\right)$ - spatial average of distribution function in spatial cell V_{i} at time moment t^{n}.

- The numerical flux through the face $A_{i l}$ is defined as

$$
\boldsymbol{\Phi}_{i l}^{n+1}=\int_{A_{i l}}\left(\boldsymbol{\xi}_{n i l} \circ \boldsymbol{f}^{n+1}\right) d s, \quad \boldsymbol{\xi}_{n i l}=n_{1 /} \boldsymbol{\Xi}_{1}+n_{2 /} \boldsymbol{\Xi}_{2}+n_{3 /} \boldsymbol{\Xi}_{3}
$$

Here vector $\boldsymbol{\xi}_{n /}$ consists of projections of velocity nodes onto outward unit normal $n_{i l}$ of face $/$ of cell V_{i}.

- We consider cells of various shapes.

Linearization of the implicit scheme

- For the collision term

$$
\boldsymbol{J}_{i}^{n+1} \approx \boldsymbol{J}_{i}^{n}-\nu_{i}^{n} \Delta \boldsymbol{f}_{i}
$$

- For the flux assume first-order spatial approximation while computing Jacobians:

$$
\boldsymbol{\Phi}_{i l}^{n+1} \approx \boldsymbol{\Phi}_{i l}^{n}+\frac{\partial \boldsymbol{\Phi}_{i I}^{n}}{\partial \boldsymbol{f}_{i}^{n}} \circ \Delta \boldsymbol{f}_{i}+\frac{\partial \boldsymbol{\Phi}_{i l}^{n}}{\partial \boldsymbol{f}_{i,}^{n}} \circ \Delta \boldsymbol{f}_{\boldsymbol{i}} .
$$

- Important: $\boldsymbol{\Phi}_{i l}^{n}$ is computed with the full second order of spatial accuracy.
- Regrouping, we get:

$$
\left(\left(\frac{1}{\Delta t}+\nu_{i}^{n}\right) \boldsymbol{I}_{\xi}+\frac{1}{\left|V_{i}\right|} \sum_{l=1} \frac{\partial \boldsymbol{\Phi}_{i l}^{n}}{\partial \boldsymbol{f}_{i}^{n}}\right) \circ \Delta \boldsymbol{f}_{i}+\frac{1}{\left|V_{i}\right|} \sum_{l=1}\left(\frac{\partial \boldsymbol{\Phi}_{i l}^{n}}{\partial \boldsymbol{f}_{i_{l}}^{n}}\right) \circ \Delta \boldsymbol{f}_{i_{l}}=\boldsymbol{R}_{i}^{n}
$$

Here $\boldsymbol{I}_{\xi}=\operatorname{diag}(1, \ldots, 1)^{T}$ is a unit matrix of dimension N_{ξ}.

- These relations connect increments of the solution in the cell V_{i} and its neighbours for all cells $i=1, \ldots, N_{\text {space }}$.
- The system is solved using an adaptation of the LU-SGS algorithm of Men'shov \& Nakamura (2000). Details omitted.

Computed reduced flow rate data

Reduced flow rate $Q=\frac{\dot{M}}{\dot{M}_{0}}, \quad \dot{M}_{0}=\sqrt{\pi} / 2, \quad \dot{M}=\int_{A(z)} n(x, y, z) u_{3}(x, y, z) d x d y$.

	$R_{2}=1$				$R_{2}=2$			$R_{2}=4$
	Ref. 1			Ref. 2		Present work		
δ_{1}	$L=5$	$L=10$	$L=10$	$L=20$	$L=5$	$L=10$	$L=20$	$L=10$
0.	0.311	0.192	0.190	0.108	0.446	0.291	0.177	0.309
0.1	0.312	0.190	0.191	0.123	0.452	0.295	0.177	0.312
1	0.334	0.198	0.201	0.127	0.499	0.318	0.185	0.337
10	0.543	0.335	0.335	0.220	0.770	0.525	0.316	0.542
20	0.695	0.463	0.462	0.320	0.919	0.684	0.446	0.691
50	0.917	0.696	0.697	0.550	1.104	0.909	0.688	0.916
100	1.068	0.874	0.889	0.773	1.221	1.060	0.876	1.069

Ref 1: S. Varoutis et al. Rarefied gas flow through short tubes into vacuum. J. Vac. Sci. Technol., 26(1):228-238, 2008.

Ref 2: V.A. Titarev et. al. Rarefied gas flow through a diverging conical pipe into vacuum. Vacuum, 101:10-17, 2014.

Axial plots for $L=10$ and $\delta_{1}=1$.

Axial plots for $L=10$ and $\delta_{1}=100$.

Contour lines for $\delta_{1}=1$.

Number density:

Stream lines:

Formation of a Mach disk (1)

Axial distribution of temperature: curves $1-4$ correspond to $\delta_{1}=100,200,500,1000$.

Formation of a Mach disk (2)

Axial distribution of Mach number: curves $1-4$ correspond to $\delta_{1}=100,200,500,1000$.

Formation of a Mach disk: contour lines for $\delta_{1}=1000$.

Number density:

Stream lines:

Formation of a Mach disk for $L=5 \& \delta_{1}=1000$.

Number density:

Stream lines:

Conclusions

Some recent publications for 3D rarefied gas flows:
(1) V.A. Titarev and E.M. Shakhov. Computational study of a rarefied gas flow through a long circular pipe into vacuum //Vacuum, Special Issue "Vacuum Gas Dynamics". 2012. V. 86. N. 11. p. 1709-1716.
(2) V.A. Titarev, E.M. Shakhov, and S.V. Utyuzhnikov. Rarefied gas flow through a diverging conical pipe into vacuum // Vacuum, 101:10-17, 2014.
(3) V. Titarev, M. Dumbser and S. Utyuzhnikov. Construction and comparison of parallel implicit kinetic solvers in three spatial dimensions // J. Comp. Phys. 2014. V. 256. p. 17-33.
(4) V.A. Titarev and E.V. Shakhov. Rarefied gas flow into vacuum through a pipe composed of two circular sections of different radii // Vacuum. 2014, in press.
(5) V.A. Titarev. Computer package Nesvetay-3D for modelling three-dimensional flows of monatomic rarefied gases // Science \& Education. 2014. N. 6.

Acknowledgments:

This work was supported by the Russian Foundation for Basic Research, project no. 13-01-00522 A. The first author also acknowledges the support by the Russian government under grant "Measures to Attract Leading Scientists to Russian Educational Institutions" (contract No. 11.G34.31.0072).

