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Specification of the problem

Consider two (infinitely) large reservoirs filled with the same monatomic gas and
connected by a pipe of length L. The first half of the pipe is of radius R1. The
second half, adjacent to the vacuum region, is of the radius R2 ≥ R1.

The complete accommodation of momentum and energy of molecules occurs at
the pipe surface, which is kept under the constant temperature T1.

An example of geometry of the problem is shown here for L/R1 = 10 and
R2/R1 = 2.
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BKE with the Shakhov model collision integral (1968)

The 3D S-model equation for the velocity distribution function f is given by
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Boundary condition on the surface:
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Here Prandtl number Pr = 2/3, Rg is gas constant, m is molecular mass.

V.A. Titarev and E.M. Shakhov (CC RAS) Composite pipe RGD 29 3 / 18



Non-dimensional form of the S-model equation

Let us pass to non-dimensional variables as follows:
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where p1 = mn1RgT1, v∗ =
√

2RgT1

The degree of gas rarefaction is described by the so-called rarefication parameter
δ1, which is inversely proportional to the Knudsen number:
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Here λ1 is the free molecular path at reference conditions.

Below the non-dimensional variables are denoted by the same symbols as
dimensional ones.
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Non-dimensional form of the S-model equation (continued)

In the non-dimensional variables the kinetic equation takes the form:
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The non-dimensional pressure is given by p = nT .

Boundary condition on the surface:
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Numerical method of solution & Nesvetay-3D package

Discrete velocity method conservative with respect to collision integral

Steady solution is found by time marching
Time-dependent calculations: Kolgan-type (1972) TVD method
Conservative calculations of macroscopic variables (number density,
velocity, temperature, heat flux vector)

Fully implicit time marching

One-step linearized method with large CFL numbers ≈ 10 . . . 1000
LU-SGS approach of Men’shov and Nakamura to compute time
increments

Second-order accurate Total Variation Diminishing method

Arbitrary cells in physical domain
Least-square or quasi-1D reconstructions
Various slope limiters

Parallel solver

Both physical or velocity domains can be split
Calculations run on up to 512 CPU cores
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Conservative discrete velocity framework

March in time to steady state:

∂

∂t
f = −ξ∇f + J(f ), J = ν(f (S) − f ),

Replace the infinite domain of integration in the molecular velocity space ξ by a
finite computational domain.

Let Ξk be a vector, made of k-th component of velocity nodes over the whole
mesh:

Ξk = (ξk1, ξk2, ξk3, . . . ξkNξ )T .

The kinetic equation is replaced by a system of Nξ advection equations:

∂

∂t
f +

∂

∂xα
(Ξα ◦ f ) = J , J = ν(f (S) − f ).

Here operation ◦ corresponds to a component by component multiplication of
vectors c = a ◦ b → ci = aibi .
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One step implicit numerical method

Denote by |Vi | the cell volume, |A|il area of face l . Integration over a control
volume and use of calculus leads to the following implicit method:

∆fi
∆t

= Rn+1
i , ∆fi = f n+1

i − f n
i , Rn+1

i = − 1

|Vi |
∑
l=1

Φn+1
il + Jn+1

i ,

where f n
i = f (tn, xi ) - spatial average of distribution function in spatial cell Vi at

time moment tn.

The numerical flux through the face Ail is defined as

Φn+1
il =

∫
Ail

(ξnil ◦ f n+1)ds, ξnil = n1lΞ1 + n2lΞ2 + n3lΞ3.

Here vector ξnl consists of projections of velocity nodes onto outward unit normal
nil of face l of cell Vi .

We consider cells of various shapes.
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Linearization of the implicit scheme

For the collision term
Jn+1
i ≈ Jn

i − νni ∆fi .

For the flux assume first-order spatial approximation while computing Jacobians:
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i

◦∆fi +
∂Φn

il

∂f n
il
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Important: Φn
il is computed with the full second order of spatial accuracy.

Regrouping, we get:((
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Here Iξ = diag(1, . . . , 1)T is a unit matrix of dimension Nξ.

These relations connect increments of the solution in the cell Vi and its neighbours
for all cells i = 1, . . . ,Nspace.

The system is solved using an adaptation of the LU-SGS algorithm of Men’shov &
Nakamura (2000). Details omitted.

V.A. Titarev and E.M. Shakhov (CC RAS) Composite pipe RGD 29 9 / 18



Computed reduced flow rate data

Reduced flow rate Q =
Ṁ

Ṁ0

, Ṁ0 =
√
π/2, Ṁ =

∫
A(z)

n(x , y , z)u3(x , y , z)dxdy .

R2 = 1 R2 = 2 R2 = 4

Ref. 1 Ref. 2 Present work

δ1 L = 5 L = 10 L = 10 L = 20 L = 5 L = 10 L = 20 L = 10
0. 0.311 0.192 0.190 0.108 0.446 0.291 0.177 0.309

0.1 0.312 0.190 0.191 0.123 0.452 0.295 0.177 0.312
1 0.334 0.198 0.201 0.127 0.499 0.318 0.185 0.337

10 0.543 0.335 0.335 0.220 0.770 0.525 0.316 0.542
20 0.695 0.463 0.462 0.320 0.919 0.684 0.446 0.691
50 0.917 0.696 0.697 0.550 1.104 0.909 0.688 0.916

100 1.068 0.874 0.889 0.773 1.221 1.060 0.876 1.069

Ref 1: S. Varoutis et al. Rarefied gas flow through short tubes into vacuum. J. Vac. Sci.
Technol., 26(1):228–238, 2008.

Ref 2: V.A. Titarev et. al. Rarefied gas flow through a diverging conical pipe into
vacuum. Vacuum, 101:10–17, 2014.
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Axial plots for L = 10 and δ1 = 1.
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Axial plots for L = 10 and δ1 = 100.
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Contour lines for δ1 = 1.

Number density:

Stream lines:

V.A. Titarev and E.M. Shakhov (CC RAS) Composite pipe RGD 29 13 / 18



Formation of a Mach disk (1)

Axial distribution of temperature: curves 1–4 correspond to δ1 = 100, 200, 500, 1000.
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Formation of a Mach disk (2)

Axial distribution of Mach number: curves 1–4 correspond to δ1 = 100, 200, 500, 1000.
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Formation of a Mach disk: contour lines for δ1 = 1000.

Number density:

Stream lines:
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Formation of a Mach disk for L = 5 & δ1 = 1000.

Number density:

Stream lines:
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Conclusions

Some recent publications for 3D rarefied gas flows:

1 V.A. Titarev and E.M. Shakhov. Computational study of a rarefied gas flow
through a long circular pipe into vacuum //Vacuum, Special Issue “Vacuum Gas
Dynamics”. 2012. V. 86. N. 11. p. 1709-1716.

2 V.A. Titarev, E.M. Shakhov, and S.V. Utyuzhnikov. Rarefied gas flow through a
diverging conical pipe into vacuum // Vacuum, 101:10–17, 2014.

3 V. Titarev, M. Dumbser and S. Utyuzhnikov. Construction and comparison of
parallel implicit kinetic solvers in three spatial dimensions // J. Comp. Phys.
2014. V. 256. p. 17-33.

4 V.A. Titarev and E.V. Shakhov. Rarefied gas flow into vacuum through a pipe
composed of two circular sections of different radii // Vacuum. 2014, in press.

5 V.A. Titarev. Computer package Nesvetay-3D for modelling three-dimensional
flows of monatomic rarefied gases // Science & Education. 2014. N. 6.

Acknowledgments:
This work was supported by the Russian Foundation for Basic Research, project
no. 13-01-00522 A. The first author also acknowledges the support by the Russian
government under grant ”Measures to Attract Leading Scientists to Russian Educational
Institutions” (contract No. 11.G34.31.0072).

V.A. Titarev and E.M. Shakhov (CC RAS) Composite pipe RGD 29 18 / 18


